23 research outputs found

    Abundance, rarity and invasion debt among exotic species in a patchy ecosystem

    Get PDF
    Community assembly through species invasions is a long-term process, for which vital information regarding future trends can be contained in current patterns. Using comparative analyses of native and exotic plant assemblages from meadow patches on islands in British Columbia, Canada, we examined multiple lines of evidence for ‘invasion debt’, a latent expansion of exotic species populations. We show that: (1) short-dispersing species are underrepresented compared to their long-dispersing counterparts in exotic species only; (2) among species that are invasive elsewhere in North America, a greater proportion of long dispersers are common in the study area and a greater proportion of short dispersers are rare; and (3) time since arrival in the study region is positively related to number of occurrences in exotic species. In addition, we show that a suite of exotic species possesses the facility of rapid long-distance dispersal and ability to establish viable populations on even the most isolated and least disturbed patches. While some highly-dispersive exotic species can rapidly colonize new areas, short dispersers appear to exhibit invasion debt, with their potential distributions only being realized in the long term. Removing or even reducing populations of many rapid colonizers could be extremely difficult; however, for species exhibiting patterns most consistent with invasion debt, an opportunity exists for monitoring and removal to help reduce potential competition with native species

    Why Are Some Plant Genera More Invasive Than Others?

    Get PDF
    Determining how biological traits are related to the ability of groups of organisms to become economically damaging when established outside of their native ranges is a major goal of population biology, and important in the management of invasive species. Little is known about why some taxonomic groups are more likely to become pests than others among plants. We investigated traits that discriminate vascular plant genera, a level of taxonomic generality at which risk assessment and screening could be more effectively performed, according to the proportion of naturalized species which are pests. We focused on the United States and Canada, and, because our purpose is ultimately regulatory, considered species classified as weeds or noxious. Using contingency tables, we identified 11 genera of vascular plants that are disproportionately represented by invasive species. Results from boosted regression tree analyses show that these categories reflect biological differences. In summary, approximately 25% of variation in genus proportions of weeds or noxious species was explained by biological covariates. Key explanatory traits included genus means for wetland habitat affinity, chromosome number, and seed mass

    Time since Introduction, Seed Mass, and Genome Size Predict Successful Invaders among the Cultivated Vascular Plants of Hawaii

    Get PDF
    Extensive economic and environmental damage has been caused by invasive exotic plant species in many ecosystems worldwide. Many comparative studies have therefore attempted to predict, from biological traits, which species among the pool of naturalized non-natives become invasive. However, few studies have investigated which species establish and/or become pests from the larger pool of introduced species and controlled for time since introduction. Here we present results from a study aimed at quantifying predicting three classes of invasive species cultivated in Hawaii. Of 7,866 ornamental species cultivated in Hawaii between 1840 and 1999, 420 (5.3%) species naturalized, 141 (1.8%) have been classified as weeds, and 39 (0.5%) were listed by the state of Hawaii as noxious. Of the 815 species introduced >80 years ago, 253 (31%) have naturalized, 90 (11%) are classed as weeds, and 22 (3%) as noxious by the state of Hawaii. Using boosted regression trees we classified each group with nearly 90% accuracy, despite incompleteness of data and the low proportion of naturalized or pest species. Key biological predictors were seed mass and highest chromosome number standardized by genus which, when data on residence time was removed, were able to predict all three groups with 76–82% accuracy. We conclude that, when focused on a single region, screening for potential weeds or noxious plants based on a small set of biological traits can be achieved with sufficient accuracy for policy and management purposes

    Abstract concept learning in a simple neural network inspired by the insect brain

    Get PDF
    The capacity to learn abstract concepts such as 'sameness' and 'difference' is considered a higher-order cognitive function, typically thought to be dependent on top-down neocortical processing. It is therefore surprising that honey bees apparantly have this capacity. Here we report a model of the structures of the honey bee brain that can learn sameness and difference, as well as a range of complex and simple associative learning tasks. Our model is constrained by the known connections and properties of the mushroom body, including the protocerebral tract, and provides a good fit to the learning rates and performances of real bees in all tasks, including learning sameness and difference. The model proposes a novel mechanism for learning the abstract concepts of 'sameness' and 'difference' that is compatible with the insect brain, and is not dependent on top-down or executive control processing
    corecore